世界杯最大比分

输入向量

[

1

,

2

,

3

,

4

,

1

,

2

,

3

]

{\displaystyle [1,2,3,4,1,2,3]}

对应的Softmax函数的值为

[

0.024

,

0.064

,

0.175

,

0.475

,

0.024

,

0.064

,

0.175

]

{\displaystyle [0.024,0.064,0.175,0.475,0.024,0.064,0.175]}

。输出向量中拥有最大权重的项对应着输入向量中的最大值“4”。这也显示了这个函数通常的意义:对向量进行归一化,凸显其中最大的值并抑制远低于最大值的其他分量。

下面是使用Python进行函数计算的範例程式碼:

import math

z = [1.0, 2.0, 3.0, 4.0, 1.0, 2.0, 3.0]

z_exp = [math.exp(i) for i in z]

print(z_exp) # Result: [2.72, 7.39, 20.09, 54.6, 2.72, 7.39, 20.09]

sum_z_exp = sum(z_exp)

print(sum_z_exp) # Result: 114.98

softmax = [round(i / sum_z_exp, 3) for i in z_exp]

print(softmax) # Result: [0.024, 0.064, 0.175, 0.475, 0.024, 0.064, 0.175]

Python使用numpy计算的示例代码:

import numpy as np

z = np.array([1.0, 2.0, 3.0, 4.0, 1.0, 2.0, 3.0])

print(np.exp(z)/sum(np.exp(z)))

Julia 的範例:

julia> A = [1.0, 2.0, 3.0, 4.0, 1.0, 2.0, 3.0]

7-element Array{Float64,1}:

1.0

2.0

3.0

4.0

1.0

2.0

3.0

julia> exp.(A) ./ sum(exp.(A))

7-element Array{Float64,1}:

0.0236405

0.0642617

0.174681

0.474833

0.0236405

0.0642617

0.174681